skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lambros, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2027
  2. Free, publicly-accessible full text available August 7, 2026
  3. Abstract Additive manufacturing (AM) is a powerful technique for producing metallic components with complex geometry relatively quickly, cheaply and directly from digital representations; however, residual stresses induced during manufacturing can result in distortions of components and reductions in mechanical performance, especially in parts that lack rotational symmetry and, or have cross sections with large aspect ratios. Geometrically reinforced thin plates have been built in nickel–chromium alloy using laser-powder bed fusion (L-PBF) and their shapes measured using stereoscopic digital image correlation before and after release from the base-plate of the AM machine. The results show that residual stresses cause potentially severe out-of-plane deformation that can be alleviated using either an enveloping support structure, which increased the build time substantially, was difficult to remove and wasted material, or using buttress supports to the reinforced edges of the thin plate. The buttresses were quick to build and remove, minimised waste but needed careful design. Plates built in a landscape orientation required out-of-plane buttresses while those built in a portrait orientation required both in-plane and out-of-plane buttresses. In both cases, out-of-plane deformation increased on release from the baseplate but this was mitigated by incremental release which resulted in out-of-plane deformations of less than 5% of the in-plane dimensions. 
    more » « less
  4. Abstract We investigate shock propagation in confined, frictionless granular media using discrete element simulations with an elastoplastic contact law. Depending on the level of confinement and loading, elastoplastic systems exhibit a weak or strong shock propagation response similar to an elastic Hertzian system although the details of the shock development differ markedly from the elastic case. Two modes of dynamic stress propagation are observed based on the shock intensity regime: weak shocks carry the stresses via the initial contact path while strong shocks form new contact networks behind the front. However, unlike for elastic shock propagation, there is an upper bound to the front velocity of strong shocks that depends on the maximum intergranular contact stiffness. Since elastoplastic contact is a dissipative process, results show that dissipation is enhanced with confining pressure in the weak shock regime. 
    more » « less